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FACTORIZATION OF PRIME IDEAL EXTENSIONS 
IN NUMBER RINGS 

ILARIA DEL CORSO 

ABSTRACT. Following an idea of Kronecker, we describe a method for factoring 
prime ideal extensions in number rings. The method needs factorization of 
polynomials in many variables over finite fields, but it works for any prime and 
any number field extension. 

INTRODUCTION 

Let F c K be number fields, let &F C &K be their corresponding num- 
ber rings, i.e., the integral closures of Z in F and K, respectively, and let 
[K: F] = d. 

We know that number rings are Dedekind domains, hence any ideal factors 
uniquely into a product of primes. A very natural problem is to find this fac- 
torization explicitly; in particular, one can assume that factorization in &F is 
known and can try to compute factorization in &K. The crucial step is to find 
the splitting of P6K for any prime ideal P of &F: in fact any prime factor of 
an ideal I must occur in the splitting of some P6K, where P is a prime factor 
of the norm over F of I, and the norm itself gives bounds for the exponents. 

By a theorem of Kummer, the splitting of P6K can easily be determined in 
all but finitely many cases: one simply takes the minimal polynomial over &F 
of an integral generator a of the extension and factors it modulo P; this gives 
all that one needs (see [4, p. 79]). Unfortunately, this method works only if 
the prime integer lying under P does not divide the order of the factor group 
AK/6F[aI - 

For a fixed prime P, one could try to fulfill this condition by choosing a 
suitably, but this does not yet exclude all exceptions, since there may exist primes 
dividing the order of &K/&F[a] for any a (see [5, p. 64] for an example). 

Originally, this problem was studied and partially solved by Kronecker [2] 
with an approach different from Kummer's; later, Hensel [1] improved upon 
Kronecker's result to obtain a method for finding the splitting of all prime 
ideals (p) of Z in number rings. This method is based on the factorization 
modulo p of the polynomial NK/Q(y - a IuI - * * - ahUh), where a l, * *, ah 
is an integral basis of (K. Surprisingly, this work seems to be nearly forgotten 
and almost generally unknown. 

In this paper we give a modern version of the theorem of Kronecker-Hensel 
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and generalize it to the case of any prime ideal and any number field extension. 
Moreover, we are able to simplify the algorithm by showing that it is enough to 
factor NK/F(Y - wOlul - - u-ou), where wO1, ... , wn are cF-algebra gener- 
ators of &K, thereby generalizing Kummer's theorem as well. 

STATEMENT AND PROOF OF THE THEOREM 

Let {wOI, .5. , wn} be any set of generators of the ring &K as an &F-algebra, 
i.e., SK = &F[wI1, ..., wjOM Let U1, ..., 5Un be indeterminates, which will be 
considered as parameters, and co = O IUI + . + WOnUn E &K [U, -... -, Un. 

Given a prime ideal P in &F, then 6K/P6K is a vector space of dimension 
d over 6FIP/P whence (AK/PAK)(U1, ... , Un) is itself a vector space and has 
dimension d over (c$/P)(Ul, ... , Un) . More generally, if I is any ideal in AK 
containing P, then 6K/I is a vector space over &FIP and (Ak/I)(Ui, *U *, Un) 
is a vector space over (c$/P)(ul, ... , Un) - 

We use the following notation: [wo]1 will be the projection of co in 
(S'K/I)(U1, .I. , Un); denote by 

OI: A^/I) ( U 1, . . ., an ) ) (AKII) ( U 1, . ., n ) 

the endomorphism of the (c$/P)((ul, ..., un)-vector space given by the multi- 
plication by [o]1, by M[,,,], the matrix associated with q, , and by 

I(y) = det(yI - M[,],) E (6'F/P)[ul, *..., u][y] 

its characteristic polynomial. Clearly, the characteristic and the minimal poly- 
nomials of qV and of [wo]1 are the same. Whenever we deal with an ideal of 
SK, we assume tacitly that it contains P&K. 
Lemma 1. Let Q C &K be a prime ideal. Then FQ(y) is irreducible. 
Proof. Let L = (A$/P)(u1, ... , un); the element [NoQ E (&KIQ)(Ul, *--, Un) 
is algebraic over L. We know that 

L[[ow]Q] L[y] 
L[[c]Q]-(#[ [Y(]y)) 

where liU[C]Q is the minimal polynomial of [o]Q; clearly, II[C)]Q is irreducible 
and has the same degree as the extension L[[wo]Q]/L. We claim that FQ(y) = 
Ji[(,,]Q(y); since the characteristic polynomial is a power of the minimal polyno- 
mial, it is enough to prove that they have the same degree. 

Let a1, ... , af be the automorphisms of 6K/Q fixing &FIP/P and let the 
vi 's be the automorphisms of (Ak/Q)(uI, ... , un)/L extending the av 's in the 
obvious way. Since di([wo]Q) :$ Qj([Wo]Q) if i :$ j, one has degu[,,]Q(y) > f 
and the result follows. Z 

Lemma 2. Let Q1, Q2 C &K be prime ideals with Q1 : Q2. Then FQ1 (Y) $ 
FQ2(Y). 

Proof. Suppose FQ1 (y) = FQ2 (Y); let f be the degree of this polynomial. Then 
AK/Q1 and IK/Q2 are both normal extensions of degree f of &FIP/P hence 
there exists an isomorphism of fields 

MK/Q2 lK/Q1 

fixing &FIP. Let 

'A: (&KIQ2)(Ul, ... , Un) - (KI/QI)(ul, ... , Un) 
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be the isomorphism extending yi in the obvious way. Let I IPI I denote the 
absolute norm of the ideal P; we know that in (AK/Q2)((U, I -, Un)[y] we 
have 

f-i 

h=O 

f-i 
(2) g~~~~~Q2 (Y) (Y H [oil )- 

h=O 

By applying vP to equation ( 1) we obtain the following equality in 
(aK/Qi) ? (u1, *--, Un)[y] 

f- Ih 

(2) WQ2 (Y) (Y ( ([oil )) 

h=O 

Since (AK/Q1)(u1, ..., un)[y] is a unique factorization domain and Q (Y) = 

Q2 (y), (2) and (3) imply that P([C]Q2j) = [w]ljI IPh Clearly, we can assume 
that P([w]Q2) = [W]Q1 (this can be obtained by composing yi with a suitable 
automorphism of &KI/Qi), so that yV([OkIQ2) = [wOk]Q1 for each k = 1, ... , n. 
Consider now a generic element G(oil, ... , wO) E AF[w1, *--, COn] = &K; we 
have 

y([G(1 , *--, Wn)]Q2) = [G(w1 , *--, 

hence [G(wti, ..., wtn)]Q2 = 0 if and only if [G(oil, ... , w6)]Q = 0, i.e., if 
and only if Q1 = Q2, a contradiction. Z 

Lemma 3. Let Q C &K be a prime ideal such that Q21pI Then ga([wI]Q2) :$ 0. 

Proof. Assume 

(4) FQ([kO1]Q2U1 + + [VOn]Q2Un) = O 

i.e., WQ is the minimal polynomial of [WI]Q2 ; then 

E = ($F/P))(u, . U. , un )[[wO]Q2 ] (/P) (u A, . , u )[y] 

By Lemma 1 the polynomial FQ(y) is irreducible, hence E is a field. 
Let F(ui, ... , Un) = FQ([W1I]Q2U1 + --- + [Whn]Q2un) (Q can be seen as 

a polynomial with coefficients in 6F/P and indeterminates ul, ... , Un , y). 
Then F(ui, ... , un) is a polynomial in ul, ... , Un, with coefficients in E, 
and we have by (4) that F(uI, ..., 5Un) = 0. Therefore, the partial derivatives 
OF are also all zero; hence we have 
au, 

(5) 
- [Oj]Q2W6([I]Q2) + a ([wJ]Q2) = 0, 

where W6(y) = a % (y) . Since WQ is separable, KWI([O]Q2) :$ 0, hence equation 
(5) implies that [WOi]Q2 E E for each i. From this it follows that 

E = (&KIQ2)(Ul, ..U n), 

since (&K/Q2) is not an integral domain; we have a contradiction. Z 

If h E &K[U1, ... , Uj, we will denote by cont(h) the ideal generated in &K 

by the coefficients of h. 
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Theorem. Let Fp(y) = Fi (y)e1 * r e W(y)er be the factorization of Fp(y) into 
irreducible factors. Then 

PK = Q 1...Qer 

here Qj = (P, Jj), where Ji = cont(ic(w)) and il(y) is any monic polynomial 
in AF[U1, ... , Un][y] representing F(y). Also, f(Qi P) = deg W(y). 
Proof. Let Qe* Qer be the prime decomposition of P6K; we observe that 
the factorization of Fp(y) has the same form. In fact, let I1, h C IcK be ideals 
such that P&K C I1I2, and consider the following diagram: 

0 o Un) 
- L(Ui . -, n) A U ) 0 

l0Il~~~~ OIII2 10I2 

0 u (Ul,**n) __1I2(U, 
** 

* Un) AfI2(as *, Un) ) 0 

where i and 7t are the obvious maps. The rows are exact sequences 
of (c$/P)(ul, ... , un)-vector spaces of finite dimension, the O's are 
(6$/P)(ul, ... , un)-linear maps, and the diagram is clearly commutative; so 
we have that 

Wh I2(Y) = Wh (Y)I2(Y) 

for any Ii, cI2 (see [3, p. 548]), i.e., the characteristic polynomial is multiplica- 
tive. Hence, 

( 6 ) G~~P (y ) = FQ( 1.....& y)e 

Moreover, Lemmas 1 and 2 imply that (6) is the factorization of Fp(y) into 
distinct irreducible factors. 

It remains to show that Qj = (P, Ji). By definition of Ji it follows that 
P c (P, Jj) c Qj; on the other hand, 

Q, (Cl)) 0- 0 (mod Qj Qj) 

(this follows from Lemma 3, if i = j, and from Lemmas 1 and 2, if i 54 j); 
hence Qj= (P. J). El 

As already observed, our result generalizes Kummer's theorem; in fact, the 
homogeneous form Up can be seen as a homogenized polynomial in n vari- 
ables, hence if SK = &F[a], we have to factor a polynomial in one variable. 

We finally remark that this theorem, with the same proof, holds in the more 
general case of finite integral extensions of Dedekind domains, provided that 
the residue field &F/P is finite. 
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